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Abstract
	 Currently, there are several open research issues in Mobile Ad-hoc 

Networks (MANETs). However, previous studies are mainly focused on the 

routing robustness, scalability and survivability. There are several available 

attacking methods to MANETs. For MANET security investigation, we have              

selected Optimal Link State Routing (OLSR) and Open Shortest-Path First–          

MANET Designated Router (OSPF-MDR) protocols to evaluate the two critical 

types of attacks. The first one is a selfishness attacking. The second one is a 

selective forwarding attack. Experimental results have illustrated that OLSR 

and OSPF-MDR are vulnerable to the selfishness attacking and the selective 

attacking method. 
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Introduction
	 In the future of network era, 

wireless entities are essential features 

for the network connectivity. Mobile 

Ad Hoc Networks (MANETs) (Corson & 

Macker, 1999) is one of the most 

important parts. MANETs can be 

acted as a router and a normal user. 

Moreover, MANETs automatically 

organize and form network structures. 

Routing protocols are important 

mechanisms to operate MANETs. In 

addition, two main functionalities 

have been normally used to describe 

routing characteristics including reac-

tive and proactive routing protocol. 

In the reactive routing protocol, a 

protocol activates routing operations 

on-demand. In the proactive routing 

protocol, a protocol actively main-

tains routing paths for all known 

destinations. In particular, proactive 

routing protocols have been widely 

indicated as a good responsiveness 

to the topology changes. To explore 

such capabilities, two proactive rout-

ing protocols have been selected to 

use in study. The first one is the Open 

Shortest Path First–MANET Design 

Router (OSPF-MDR) (Ogier and Spag-

nolo 2009). The second one is the 

Optimized Link State Routing (OLSR) 

(Clausen & Jacquet, 2003).

	 A MANET nature undoubtedly 

shares medium accesses, and is              

easily to eavesdrop and to intercept 

sensitive information. Previous studies 

(Karlof & Wagner, 2003; Wu et al. 2007; 

Vasserman & Hopper, 2013) on            

MANET securities show several types 

of the attacking methods. Two of the 

most potential attacking methods are 

a selfishness attacking and a selective 

forwarding attack. In the selfishness 

attacking, malicious users always dis-

card routing messages to avoid being 

an intermediate node. In the selective 

forwardingattack, attackers propagate 

themself as one of a traditional node. 

The attackers then attempt to be a 

part of the intermediate nodes, and 

drop data packets. Such attacking 

methods have caused legitimate us-

ers in MANETs, and have been se-

lected in this study. 

	 Three main evaluation meth-

ods, namely simulation, emulation 

and field-testing play an important 

role for MANET testing. The simulation 

tools such as NS-2 (The Network 



11Koch Cha Sarn Journal of Science Vol.36 No.1

Simulator-Ns-2), NS-3 (Network Simu-

lator 3) and OMNeT++ (OMNeT++) 

typically run on a single machine, and 

simulate the operating system and 

protocols in abstract. Without rigorous 

statistical analysis, the simulation 

results inevitably lack of the scientific 

confidence (Millman, Arora, & Neville, 

2011). Emulation is more accurate 

than simulation (Acosta & Medina, 

2012), but it uses a long time an ex-

periment. The field-testing actual 

hardware and software are used, but 

it normally tests after the intensive 

evaluation (Acosta & Medina, 2012). 

To achieve this work Common Open 

Research Emulator (CORE) (Common 

Open Research Emulator (CORE) ) has 

been selected as a tool to perform 

realtime test-beds. CORE provides 

graphical user interface, and com-

prises lightweight virtual machines. In 

addition, each virtual machine is run 

by actual routing software, including 

Quagga Routing Suit (Quagga Routing 

Suite ) and NRLOLSR (The NRL OLSR 

Routing Protocol Implementation ). 

For experimental designs, static and 

dynamic scenarios have been used 

to study OSPF-MDR and OLSR against 

our selected attacking methods. In 

static scenarios, we can investigate 

capabilities of the routing mainte-

nance. For dynamic scenarios, we can 

examine a routing convergence in 

critical situations. Experimental re-

sults demonstrate that OSPF-MDR 

outperforms OLSR for all attacking 

methods.

	 This paper is structured as 

follows. Section 2 is background. Sec-

tion 3 is the experimental setup. 

Section 4 is the experimental results, 

and concludes in section 5.

Background 
	 OSPF-MDR

	 Open Shortest Path First–MA-

NET Design Router (OSPF-MDR) (Ogier 

& Spagnolo, 2009) is an extension of 

the Open Shortest Path First (OSPFv3) 

to support MANET. OSPF-MDR proac-

tively operates to maintain all known 

destinations. MANET Designated 

Router (MDRs) is a key feature of 

OSPF-MDR, and provides better         

robustness and better response to 

topology changes. MDRs are con-

structed within 2-hop neighbor, and 

also form a Connected Dominating 
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Set (CDS). In addition, HELLO message 

is used to report neighbor states. A 

closed key feature is Backup MDR 

(BMDR), which is provided for backup 

a failure of MDRs. A node can select 

itself as an MDR if a value of Router 

Priority (RtrPri) is larger than the                

others.

OLSR
	 Optimized Link State Routing 

(OLSR) (Clausen & Jacquet, 2003)    

protocol operates as a proactive rout-

ing protocol. As in OSPF-MDR, OLSR 

maintains paths for all known destina-

tions. A key feature of OLSR is the 

Multiple Point Relay (MPR). MPR 

mechanism can be used to avoid the 

duplication of routing nodes, and can 

reduce transmissions of the broadcast 

packets. Also, HELLO messages have 

been used to detect neighbors and 

links. In contrast to a traditional link 

state algorithm, it normally faces with 

network overhead. OLSR do not de-

grade network performance in a high 

node motility and density. OLSR and 

OSPF-MDR have been previously 

evaluated by Fang and his colleagues 

(Fang & Goff 2010). Experimental    

results show OLSR outperforms    

OSPF-MDR. However, security issues 

have not been investigated. In this 

paper, we further study the security 

issues on OSPF-MDR and OLSR.

MANET Routing Attacks
	 MANET routing protocols have 

been used in practical implementa-

tion (The NRL OLSR Routing Protocol 

Implementation); however, the at-

tacking on MANETs are not rigorously 

investigated. (Wu et al., 2007) has 

thoroughly surveyed on the MANETs 

routing attacks, and classifies the at-

tacking methods into two major cat-

egories. One is a passive attack and 

the other one is an active attack. The 

passive attack consists of Eavesdrop-

ping, Traffic analysis and Monitoring. 

To attack MANETs, attackers quietly 

eavesdrop and filter for sensitive in-

formation. While in the active attack, 

attackers normally involve interrup-

tion and modification (such as Jam-

ming, Spoofing, Modification, Replay-

ing and DoS). Currently, dangerously 

attacking methods almost appear in 

the active attacking methods includ-

ing a selfishness attacking method 

and a selective forwarding attack.
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Selfishness Attacks
	 A single user does not tend to 

cooperate with the others. The user 

normally avoids being intermediate 

node by discarding routing messages. 

In doing so, a sender is required to 

repair for a new routing path. There-

fore, path discovery delay can be 

used to compare between OLSR and 

OSPF-MDR.

Selective Forwarding Attacks 
	 A selective forwarding attack 

mainly thwarts data transmission 

between a sender and a receiver. An 

attacker is necessary to be a part of 

the intermediate nodes, and then 

refuses to relay data packets. In this 

study, the selective forwarding attack 

does not involve in a modification of 

the routing messages. An attacker 

only moves to the best location, and 

becomes a part of the intermediate 

nodes. For routing messages, the at-

tacker normally cooperates with the 

others. The attacker easily destroys 

data communication between the 

sender and the receiver, and cannot 

be detected as an attacker. Currently, 

the selective forwarding attack is 

considerably dangerous for MANET 

environments. However, a profound 

evaluation of the selective forwarding 

attack has not been adequately in-

vestigated. In this paper, the selective 

forwarding attack problem has inves-

tigated in OLSR and OSPF-MDER rout-

ing protocol.

CORE Emulator 
	 Emulation is more accurate 

than simulations (Acosta & Medina 

2012), and Emulators can provide 

real-time perform-ance comparisons 

(Jain et al., 2011). Common Open 

Research Emulator (CORE) is one of a 

striking emulator for network test-

beds. CORE gives virtual machines, 

and emulates the network protocol. 

For realtime test-beds, CORE uses 

virtual MANET nodes that provide 

routing services. For CORE perfor-

mance evaluation, Ahrenholz et al. 

(Ahrenholz, 2010) has previously been 

experimented. Ahrenholz’s experi-

mental results are closed to the 

physical network deployment, and 

are useful in realtime test-beds.
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Experiment Setup
	 This section begins with ex-

perimental scenarios of OLSR and 

OSPF-MDR. We have selected static 

and dynamic scenarios for this study. 

Static Scenarios 
	 A design of static scenarios 

requires different multi-hop routing. 

Hence, five critical network scenarios 

have been designed, as shown in 

Figure 1. Each network scenario con-

sists of ten nodes, and deploys a 

sender, a receiver and three attackers. 

The sender and the receiver appear 

in rectangles. Attackers show in cir-

cles. Solid lines are possible routing 

paths. 
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critical network scenarios have been 
designed, as shown in Fig. 1. Each network 
scenario consists of ten nodes, and deploys 
a sender, a receiver and three attackers. The 

sender and the receiver appear in 
rectangles. Attackers show in circles. Solid 
lines are possible routing paths.  

 

Fig. 1. The network scenarios 
 

 
 
Dynamic Scenarios  

In dynamic scenarios, bonnmotion-
2.0 has been used to randomize node 
positions and mobility speeds. We have 
controlled emulation parameters as shown 
in TABLE I. An emulation area is 700x700 
meters. A mobility speed is random roughly 
20m/s. A mobility model is Random 
Waypoint.  There are 10 of network nodes 
to perform experiments and three of nodes 
are attackers. 

 

 

TABLE I. PARAMETER SETUP 
Parameters Values 
Area  700x700 m 
Mobility speed 20m/s 
Number of 
nodes 10 
Mobility model RandomWaypoint 
MAC 802.11b 

 
CORE Validation  

Fig. 2 shows a CORE validation 
scenario.  Actual wireless hardware has been 
used to compare with CORE emulator. 

A B 

C D 

E 

Figure 1. The network scenarios
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Extendable Mobile Ad-hoc Network 
Emulator (EMANE) (Extendable Mobile Ad-
Hoc Network Emulator (EMANE)  ) has also 
been integrated with CORE because it is 
required to provide IEEE 802.11b. The 
expected results are approximated to IEEE 
802.11b’s theory as following. 

IEEE 802.11b, in theory, the 
maximum bit rate is 11Mbps. However, IEEE 
802.11b data transmission requires the 
header control and the medium access 
control that require approximately 
1687.81μs (Segata, Avancini, and Canton 
2009); thus, throughput at the application 
levels (a payload of 1047 bytes) is 
1047x8bits/1687.81 or ≈6.97Mbps. 

D-Link DWA-110 Wireless USB 
Adapter, Intel Core2 Duo E7300 2.66GHz 
with 3 MB caches, 2GB of RAM and 512GB 
disk are used in this validation testing. For a 
traffic generator, Iperf(The TCP/UDP 
Bandwidth Measurement Tool  ) has been 
selected to generate data traffic and to 
collect network statistics. 

 

 
 

Fig. 2. Validation Scenario 
 

Attacking Model  
We have selected a selfishness 

attacking method and a selective forwarding 
attack. For the selfishness attacking, users in 
MANETs avoid being an intermediate node 
by discard all routing messages. For the 
selective attacking technique, malicious 

users disguise to be a legitimate node, and 
reject to forward data packets for the others. 
We repeat the measurement to 30 runs. We 
mark experimental results with error bars of 
95% confident interval. We use 6 minutes 
each experiment, and follow network events 
as in TABLE II. 

TABLE II. NETWORK EVENTS 
At 

(minute) Action 
2 Selfishness attacking 
3 Normal situation 
4 Selective forwarding attack 
5 Normal situation 
6 Halt 

 
Network events in TABLE II are used 

in both static and dynamic scenarios. At the 
first two minutes, all MANET nodes are in a 
normal situation. Afterwards, for a minute, a 
selfishness attacking method have activated 
by using attacker nodes. At the third minute, 
we halt the selfishness attacking method. A 
minute later, a selective forwarding attack 
has been launched by the attacker node.  At 
the last minute, we terminate CORE virtual 
nodes, and collect experimental statistics. 

In our experiments, a Linux bash 
script has been developed as a node 
controller. Linux networking commands, 
namely tcpdump, timeout, iperf, iptables 
and vcmd are used by injecting those 
commands into CORE nodes. For example, 
three attackers require iptables to discard 
routing messages. 

 
Experimental Results 

 

Dynamic Scenarios 
	 In dynamic scenarios, bon-

nmotion-2.0 has been used to ran-

domize node positions and mobility 

speeds. We have controlled emula-

tion parameters as shown in TABLE I. 

An emulation area is 700x700 meters. 

A mobility speed is random roughly 

20m/s. A mobility model is Random 

Waypoint. There are 10 of network 

nodes to perform experiments and 

three of nodes are attackers.

TABLE I. PARAMETER SETUP
Parameters Values

Area 700x700 m

Mobility speed 20m/s

Number of nodes 10

Mobility model RandomWaypoint

MAC 802.11b

CORE Validation 
	 Figure 2 shows a CORE valida-

tion scenario. Actual wireless hard-

ware has been used to compare with 

CORE emulator. Extendable Mobile 

Ad-hoc Network Emulator (EMANE) 

(Extendable Mobile Ad-Hoc Network 

Emulator (EMANE)) has also been 

integrated with CORE because it is 

required to provide IEEE 802.11b. The 

expected results are approximated to 

IEEE 802.11b’s theory as following.

IEEE 802.11b, in theory, the maximum 

bit rate is 11Mbps. However, IEEE 

802.11b data transmission requires 

the header control and the medium 

access control that require approxi-

mately 1687.81µs (Segata, Avancini, 

& Canton, 2009); thus, throughput at 

the application levels (a payload of 

1047 bytes) is 1047x8bits/1687.81 or 

≈6.97Mbps.

	 D-Link DWA-110 Wireless USB 

Adapter, Intel Core2 Duo E7300 

2.66GHz with 3 MB caches, 2GB of 

RAM and 512GB disk are used in this 

validation testing. For a traffic gen-

erator, Iperf (The TCP/UDP Bandwidth 

Measurement Tool) has been                 

selected to generate data traffic and 

to collect network statistics.

 

Figure 2. Validation Scenario
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Attacking Model 
	 We have selected a selfish-

ness attacking method and a selective 

forwarding attack. For the selfishness 

attacking, users in MANETs avoid being 

an intermediate node by discard all 

routing messages. For the selective 

attacking technique, malicious users 

disguise to be a legitimate node, and 

reject to forward data packets for the 

others. We repeat the measurement 

to 30 runs. We mark experimental 

results with error bars of 95% confi-

dent interval. We use 6 minutes each 

experiment, and follow network 

events as in TABLE II.

TABLE II. NETWORK EVENTS
At (minute) Action

2 Selfishness attacking

3 Normal situation

4 Selective forward-

ing attack

5 Normal situation

6 Halt

	 Network events in TABLE II are 

used in both static and dynamic sce-

narios. At the first two minutes, all 

MANET nodes are in a normal situa-

tion. Afterwards, for a minute, a self-

ishness attacking method have acti-

vated by using attacker nodes. At the 

third minute, we halt the selfishness 

attacking method. A minute later, a 

selective forwarding attack has been 

launched by the attacker node. At 

the last minute, we terminate CORE 

virtual nodes, and collect experimen-

tal statistics.

	 In our experiments, a Linux 

bash script has been developed as a 

node controller. Linux networking 

commands, namely tcpdump, time-

out, iperf, iptables and vcmd are used 

by injecting those commands into 

CORE nodes. For example, three      

attackers require iptables to discard 

routing messages.

Experimental Results
	 This section demonstrates 

exper-imental results. For validation 

testing, 802.11b throughput generat-

ing by CORE has been compared with 

the throughput of real wireless hard-

ware. For attacking results, we show 

OLSR and OSPF-MDR convergence 

time attacked by a selfishness attack-

ing method and a selective forwarding 

attack. 
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CORE validation results
	 Experimental results of the 

hardware throughput are much 

lower than 802.11b’s theory (generat-

ing by CORE), as shown in Figure 3. 

Roughly 1,000 runs, network through-

puts of CORE emulator show ap-

proximately 6.6Mbps as in the 

802.11b’s theory. On the other hand, 

the throughputs of real wireless hard-

ware present about 1.52Mbps, and 

have more variance than CORE emu-

lator. The variation probably occur 

from the collision of the traffic in a 

real network environment. Thus, 

CORE emulator can show a precise 

network events.

Figure 3.	The throughput of the hardware 

	 and the emulator
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Figure 4.	OLSR convergence time in static 

	 scenarios using the selfiness 

	 attacking method

Selfishness Attacking Results Static 

Scenarios

	 When OLSR suffers from a 

selfishness attacking method, it sud-

denly repairs a new routing path. As 

shown in Figure 4, A, B, C, D and E are 

our designed network scenarios. A 

convergence time of the five network 

scenarios demonstrates approxim-

ately 6.9±0.3 seconds. In general, 

OLSR operations always select the 

same routing path for a destination. 

Attackers can easily predict routing 

paths, and can find a location to at-

tack against OLSR. However, a new 

suitable path is quickly repaired, and 

finally avoids the selfishness attacking 

method.

	 Figure 5 shows OSPF-MDR 

convergence time in each experi-

ment. In the same network scenario, 
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OSPF-MDR has selected a lot number 

of routing paths. For example, sce-

nario B shows many different conver-

gence time. Such values indicate that 

OSPF-MDR has selected a routing path 

without attackers to destroy user 

communication. A convergence time 

of the five network scenarios shows 

about 4.6±0.5 seconds. A benefit of 

the multiple designated routers in 
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Table III. A Routing Delay of Static Scenarios with 95% Confident Interval

Protocol
Routing delay (sec)

A B C D E

OLSR 6.5±0.3 7.4±0.4 7.5±0.1 5.7±0.1 7.4±0.4

OSPF-MDR 4.2±0.9 4.9±0.9 5.9±0.1 3.9±0.6 4.5±0.3

In distinct scenarios, shown in TABLE 

III., experimental results show that 

OSPF-MDR outperforms OLSR for all 

scenarios. OLSR are 6.5±0.3, 7.4±0.4, 

7.5±0.1, 5.7±0.1 and 7.4±0.4 and 

OSPM-MDR are 4.2±0.9, 4.9±0.9, 

5.9±0.1, 3.9±0.6 and 4.5±0.3 respec-

tively. For analytical results, OSPF-

MDR is more suitable to use than 

OLSR in the selfishness attacking 

environment.

Dynamic Scenarios
 	 Convergence time of dynam-

ic senarios using the selfiness attack-

ing method 

	 For dynamic scenarios, Figure 

6 shows convergence time after at-

tacks using a selfishness attacking 

Figure 5.	OSPF-MDR convergence time in

	 static scenarios using the 

	 selective forwarding attack

Figure 6. Convergence time of dynamic 
	 senarios using the selfiness 
	 attacking method

OSPF-MDR haveperformed better 

performance than OLSR for selfish-

ness attacking environments. 
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method. OLSR and OSPF-MDR have 

15.9±5.2 and 11.8±5.9 seconds of 

convergence time. Consequently, 

OSPF-MDR outperforms OLSR to de-

fend against the selfishness attacking 

method.

Selective Forwarding Attack 

Results Static Scenarios 
	 In static scenarios, experimen-

tal results of the selective forwarding 

attack across five network scenarios 

demonstrate that OSPF-MDR and 

OLSR have failed to deliver data 

packets for a destination.

	 Attackers can easily select and 

drop the data packets. Fortunately, a 

few of data packet can be sent by 

using OSPF-MDR.

	 Figure 7 shows percentages of 

the packet delivery ratio (PDR) be-

tween OLSR and OSPF-MDR. OLSR is 

obviously unable to transmit data to 

a destination. OSPF-MDR shows ap-

proximately 30%, 32% and 23% in 

scenario A, B and E. A complete 

failure connection of OSPF-MDR in 

scenario C and D is from routing selec-

tion. The routing selection of the 

scenario C and D always passes              

attacker nodes. 

selection of
passes attac
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Figure 7.	% of network reachability on the

	 selective forwarding attack.

Dynamic Scenarios 
	 In dynamic scenario, the PDR 

of OSPF-MDR and OLSR shows 80% 

and 70% respectively. A sender, a 

receiver and three attackers have 

been moved independently in an 

emulation region. In some cases, the 

sender and the receiver have resided 

nearby their transmission range. The 

attackers cannot thwart data trans-

mission. Hence, the PDR in dynamic 

scenarios is higher that static sce-

narios. For both routing protocol in 

the selective forwarding attack, OSPF-

MDR outperforms OLSR.

 

Conclusions
	 This paper aims to investigate 

the routing protocol capabilities 

against two critical types of MANET 

attacking methods. One is a selfish-

ness attacking method and the other 

one is a selective forwarding attack. 
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We have selected two proactive rout-

ing protocols namely, OSPF-MDR and 

OLSR. 

	 Selfishness attacking results 

show that OSPF-MDR outperforms 

OLSR in static and dynamic scenarios. 

For a selective forwarding attack, 

experimental results illustrate that 

OLSR is much weaker than OSPF-MDR 

in static and dynamic scenarios. In 

conclusion, OSPF-MDR is suitable to 

use in critical MANET environments. 
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